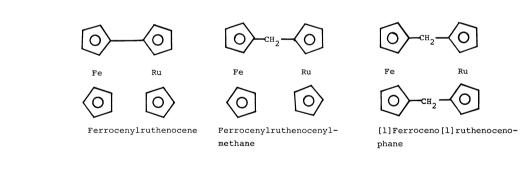
March, 1990]

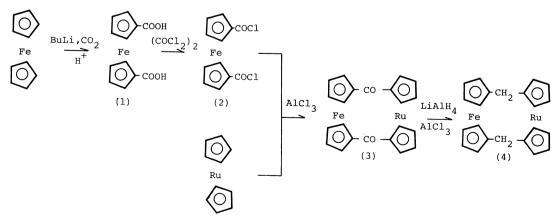
Bull. Chem. Soc. Jpn., 63, 777—784 (1990)

⁵⁷Fe-Mössbauer Spectroscopic Study of Ferrocenylruthenocene, [1](1,1')Ferroceno[1](1,1')ruthenocenophane, and Reaction Products with Some Oxidizing Agents

Masanobu Watanabe and Hirotoshi Sano*

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Fukasawa, Setagaya-ku, Tokyo 158 (Received May 12, 1989)


Ferrocenylruthenocene reacts with sulfuric acid–NH₄BF₄ to give a mono-oxidized diamagnetic ferrocenylruthenocenium BF₄⁻ salt, while it reacts with p-benzoquinon–BF₃(Et₂O) to give a trioxidized paramagnetic ferrocenylruthenocenium (BF₄⁻)₃ salt. Mössbauer parameters of the former salt are very similar to those of neutral ferrocenylruthenocene, suggesting that the structure of the salt is expressed as [Cp(C₅H₄)Fe(II)(C₅H₄)CpRu(III)–Ru(III)Cp(C₅H₄)Fe(II)(C₅H₄)Cp]²⁺(BF₄⁻)₂ with an antiferromagnetic Ru(III)–Ru(III) bond in the solid state. Well-dissolved quadrupole splitting (Q.S.) values observed for the latter salt (e.g., 0.61 mm s⁻¹ at 4.2 K) suggest the presence of a kind of intramolecular electronic effect of a ruthenocenium moiety on the Fe(III) in the ferrocenium moiety.


Although most ferrocene derivatives are oxidized by I₂ and SuCl₄, giving paramagnetic ferrocenium salts, ruthenocene reacts with the oxidizing agents, giving diamagnetic adducts determined as [RuCp₂]–2I₂ and [RuCp₂]–1.5SnCl₄ with Ru–I and Ru–Sn bonds, respectively, as found in the results of X-ray analysis or ¹²⁹I- and ¹¹⁹Sn-Mössbauer spectroscopy.^{1–3)} Moreover, we have recently reported that ferrocenylruthenocene reacts with I₂, HgCl₂, and SnCl₄, giving diamagnetic adducts with Ru–I, Ru–Hg, Fe–Hg, and Ru–Sn bonds, respectively, based on the results of ⁵⁷Fe- and ¹¹⁹Sn-Mössbauer and ¹³C-CP-MAS NMR spectroscopies.^{4–9)} The results show that the ruthenocene moiety is a weaker Lewis base than the ferrocene moiety because

of the 4d-electrons. There has been no report on the ferrocenylruthenocenium and [1]ferroceno[1]ruthenocenophanium salts, which have structures with well-separated ferrocence and ruthenocene moieties. The present study was planned to provide information about the chemical state of the iron atoms in the ferrocenylruthenocenium and [1]ferroceno[1]ruthenocenophanium cations by means of ⁵⁷Fe-Mössbauer spectroscopy and other physico-chemical measurements.

Experimental

Materials: Ferrocenylruthenocene¹⁰⁾ and ferrocenylruthe-

Scheme 1.

nocenylmethane¹¹) were prepared by the method described in previous reports.

[1]Ferroceno[1]ruthenocenophane-1,13-dione (3) was first prepared in the present study by the reaction of ruthenocene and 1.1'-bis(chloroformyl)ferrocene (2) prepared from 1.1'ferrocene dicarboxylic acid (1), as shown in Scheme 1. A solution of ruthenocene (17.3 g, 0.075 mol) in CH₂Cl₂ (100 ml) was added to a solution of AlCl₃ (52 g) in CH₂Cl₂ (600 ml) at 0 °C and then a solution of (2) (23.3 g, 0.064 mol) in CH₂Cl₂ (200 ml) was added as in the case of preparation of [1.1]ferrocenophane-1,13-dione.12) The crude products were separated by column chromatography on alumina. purple-red band eluted by CH2Cl2-CH3COOC2H5 (9:1) was determined to be the compound (3). Purple-red products were recrystallized from CHCl₃ (10.6 g, 30%). Found: C, 56.46; H, 3.60%. Calcd for C₂₂H₁₆O₂FeRu: C, 56.30: H, 3.44%. [1]Ferroceno[1]ruthenocenophane (4) was prepared by the following method. The compound (3) (4.7 g,0.01 mol) was treated with LiAlH₄ (7.6 g, 0.2 mol) and AlCl₃ (26.8 g, 0.2 mol) in diethyl ether (400 ml). The mixture was diluted with water, filtered, and extracted with ether and The crude products were separated by column chromatography on alumina. The compound (4) was eluted as a yellow band by a mixture of hexane and benzene (1:1). The products were recrystallized from hexane mixed with benzene as yellow precipitates (4.1 g, yield; 92%). Found: C, 60.30; H, 4.82%. Calcd for C₂₂H₂₀FeRu: C, 59.87; H, 4.57%.

Ferrocenylruthenocene was treated with a stoichiometric amount of p-benzoquinone and BF3-Et2O in dry hexane mixed with benzene and gave dark brown products. The products were recrystallized from nitromethane mixed with ether and determined as ferrocenylruthenocenium (BF₄-)₃. Found: C, 35.09; H, 3.33%. Calcd for C₂₀H₁₈FeRuB₃F₁₂: C, 35.55; H, 2.68%. Ferrocenylruthenocenium BF₄⁻ and PF₆⁻ salts were prepared by dissolving the ferrocenylruthenocene (100 mg) in 2 cm³ of concentrated H₂SO₄. solution was allowed to stand at room temperature for 15 min and cooled in ice. The cold solution was filtered and the filtrate added to a concentrated aqueous solution of NH₄BF₄ or NH₄PF₆. The solid formed was filtered and washed with H₂O and dried in vacuo over P₂O₅. Found: C, 48.80; H, 4.06%. Calcd for C₂₀H₁₈FeRuBF₄: C, 47.84; H, Found: C, 42.98; H, 3.33%. Calcd for C₂₀H₁₈-3.61%. FeRuPF₆: C, 42.87; H, 3.23%.

[1]Ferroceno[1]ruthenocenophane was treated with a stoichiometric amount of p-benzoquinone and BF3-Et2O in dry hexane mixed with benzene. It gave red-brown product, which was recrystallized from acetonitrile and determined as [1]ferroceno[1]ruthenocenophanium BF₄-. Found: C, 50.68; H, 3.88%. Calcd for C₂₂H₂₀FeRuBF₄: C, 50.03; H, 3.82%. [1]Ferroceno[1]ruthenocenophanium PF₆- and ferrocenylruthenocenylmethanium PF₆- were prepared under the conditions used for the ferrocenylruthenocenium PF₆- salt. Found: C, 44.86; H, 3.44%. Calcd for C₂₂H₂₀FeRuPF₆: C, 45.07; H, 3.44%. Found: C, 44.21; H, 3.45%. Calcd for C₂₁H₂₀FeRuPF₆: C, 43.91; H, 3.51%. [1]Ferroceno[1]ruthenocenophanium picrate salt was prepared by the reaction with a stoichiometric amount of p-benzoquinone and a large excess of picric acid in benzene. It gave yellow-green products, which were recrystallized from acetonitrile and determined as [1]ferroceno[1]ruthenocenophanium picrate. Found: N, 6.40; C, 50.75; H, 2.95%. Calcd for C₂₈H₂₂O₇N₃-

FeRu: N, 6.27; C, 50.24; H, 3.31%. [1]Ferroceno[1]ruthenocenophane-1,13-dione was treated with *p*-benzoquinone and BF₃–Et₂O under the conditions used for the [1]ferroceno[1]-ruthenocenophanium BF₄⁻ salt and gave black products, which were recrystallized from acetonitrile and determined as 1,13-dioxo[1]ferroceno[1]ruthenocenophanium BF₄⁻. Found: C, 47.91; H, 3.57%. Calcd for C₂₂H₁₈O₂FeRuBF₄: C, 47.51; H, 2.90%.

Measurements: ⁵⁷Fe-Mössbauer spectroscopic measurements were carried out by using a ⁵⁷Co(Rh) source moving in a constant acceleration mode. The isomer shift (I.S.) value for ⁵⁷Fe was measured with respect to metallic iron and the experimental error of the I.S. and Q.S. values was estimated within ±0.02 mm s⁻¹. Cyclic voltammograms were obtained by using a Hokuto Denko HB-107A function generator and a Hokuto Denko HA-201 potentiostat combined with a standard three-electrode configuration. A working electrode of platinum button (Beckman) and an Ag/AgCl reference electrode were connected via a salt bridge containing (0.1 mol dm⁻³) [(C₄H₉)₄N]ClO₄ in CH₃CN.

Results and Discussion

Typical ⁵⁷Fe-Mössbauer parameters of ferrocenylruthenocene, [1]ferroceno[1]ruthenocenophane, and the related compounds are listed in Tables 1 and 2. [1]Ferroceno[1]ruthenocenophane-1,13-dione gives a relatively smaller Q.S. value (2.21 mm s⁻¹, at 78 K). This is probably because of the effect of electron attractive carbonyl groups attached to the cyclopentadienyl rings. The values of ferrocenylruthenocene (2.36 mm s⁻¹ at 78 K) and [1]ferroceno[1]ruthenocenophane (2.41 mm s⁻¹ at 78 K) correspond to the value of ferrocene itself (2.41 mm s⁻¹ at 78 K), suggesting the absence of direct interaction between the Fe and Ru atoms in the neutral ferrocenylruthenocene and [1]ferroceno[1]ruthenocenophane.

Ferrocenylruthenocene is oxidized by p-benzoquinone-BF₃(Et₂O) giving a paramagnetic ferrocenylruthenocenium (BF₄⁻)₃ salt. The results of 57Fe-Mössbauer study of the ferrocenylruthenocenium $(BF_4^-)_3$ salt show that well-resolved Q.S. values are observed at temperatures between 4.2 to 300 K, as shown in Fig. 1. The doublet is ascribed to a low-spin Fe(III) species. Most of the ferrocenium salts only show a broad singlet line in their spectra because of fast relaxation, as seen in ferrocenium BF₄⁻ salt (Fig. 3-a). The magnetic susceptibility of the tricationic BF₄⁻ salt shows that the BF₄⁻ salt is paramagnetic at temperatures between 78-300 K; e.g., the effective magnetic moment is found to be 2.1 B.M. at 78 K, which is a little smaller than the value of normal ferrocenium salt (2.5 B.M. for ferrocenium BF₄⁻ salt). These facts suggest that the tricationic ferrocenylruthenocenium (BF₄⁻)₃ salt is expressed as [CpFe(III)- $(C_5H_4)(C_5H_4)Ru(IV)Cp]^{3+}(BF_4-)_3.$

The results of ESR studies show that the electronic configuration ${}^{2}E_{2g}[(a_{1g})^{2}(e_{2g})^{3}]$ can be assigned to the ferrocenium ground state. ¹³⁾ The E_{2g} state is split into

Table 1. 57Fe-Mössbauer Parameters of Ferrocenylruthenocene and Related Compounds

Compound	Temp/K	Q.S./mm s ⁻¹	I.S./mm s ⁻¹	$I(II)/I(III)^{a)}$
Ferrocene	78	2.41	0.49	
Ferrocenylruthenocene	78	2.36	0.53	
	300	2.29	0.53	_
Ferrocenylruthenocenylmethane	78	2.44	0.53	
errocenylruthenocenium (BF ₄ ⁻) ₃	4.2	0.61	0.49	
	78	0.59	0.45	
	300	0.64	0.41	_
errocenylruthenocenium BF ₄ -	78	2.34	0.48	
·	190	2.33	0.47	_
	300	2.33	0.42	_
errocenylruthenocenium PF ₆ -	78	2.25	0.47	
		0.34	0.47	0.32
	190	2.08	0.46	
		0.35	0.46	0.18
Ferrocenylruthenocenium BF ₄ ^{-b)}	78	2.32	0.48	
•		0.00	0.48	2.44
Ferrocenylruthenocenylmethanium PF ₆ -	78	2.21	0.48	
		0.00	0.49	0.64

a) I(II)/I(III) stands for the relative areal intensities of spectral components assigned to Fe(II) and Fe(III) state. b) Dispersed in poly(methyl methacrylate).

Table 2. 57Fe-Mössbauer Parameters of [1]Ferroceno[1]ruthenocenophane and Related Compounds

Compound	Temp/K	$Q.S./mm s^{-1}$	$I.S./mm s^{-1}$	$I(II)/I(III)^{a)}$
[1]Ferroceno[1]ruthenocenophane	78	2.41	0.49	_
	300	2.40	0.45	
[1]Ferroceno[1]ruthenocenophane-1,13-dione	78	2.21	0.51	_
	300	2.20	0.45	
[1]Ferroceno[1]ruthenocenophanium BF ₄ -	78	2.23	0.51	_
		0.32	0.47	1.96
	140	2.20	0.50	
		0.29	0.46	1.71
	190	2.21	0.48	
		0.30	0.44	1.09
	238	2.20	0.45	
		0.27	0.40	0.79
	300	2.21	0.44	
		0.27	0.38	0.54
[1] Ferroceno [1] ruthenocenophanium ${\rm PF_{6}^-}$	78	2.33	0.47	
		0.00	0.46	0.31
	300	2.35	0.42	
		0.00	0.42	0.19
[1]Ferroceno[1]ruthenocenophanium picrate	78	2.22	0.45	
		0.00	0.46	6.18
	190	2.20	0.43	
		0.00	0.40	5.76
	300	2.20	0.40	
		0.00	0.42	4.95
1,13-Dioxo[1]ferroceno[1]rutheno-	78	2.17	0.46	
cenophanium BF₄−		0.34	0.45	0.38
	190	2.17	0.44	
		0.33	0.42	0.32
	300	2.13	0.42	
		0.29	0.40	0.21

a) I(II)/I(III) stands for the relative areal intensities of spectral components assigned to Fe(II) and Fe(III) state.

two Kramers doublets. A negligibly small energy difference between the two Kramers doublets is known to be the reason for the fast relaxation time and for the broad singlet in ⁵⁷Fe-Mössbauer spectra of most ferrocenium salts. Therefore, the splitting of the ⁵⁷Fe-

Mössbauer line (about $0.6 \, \text{mm s}^{-1}$) and the smaller magnetic moments found in the ferrocenylruthenocenium (BF₄⁻)₃ salt imply a larger energy difference between the two Kramers doublets in the ferrocenylruthenocenium (BF₄⁻)₃ salt. This suggests the

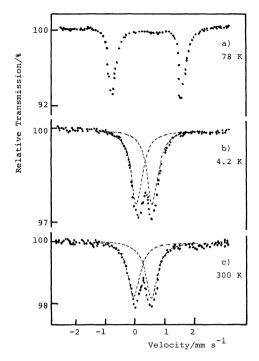


Fig. 1. ⁵⁷Fe-Mössbauer spectra of ferrocenylruthenocene (a) and tricationic ferrocenylruthenocenium (BF₄-)₃ salt (b,c), at indicated temperatures.

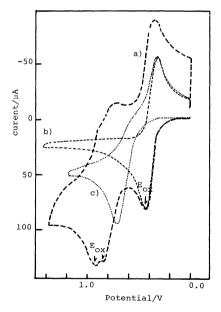


Fig. 2. Cyclic voltammograms of ferrocenylruthenocene (a), ferrocene (b), and ruthenocene (c) in acetonitrile. (Sweep rate; 300 mV s⁻¹).

presence of some kind of electronic effect of a ruthenocenium moiety on the Fe(III) ion in the ferrocenium moiety. The tricationic BF_4 ⁻ salt is so unstable that high spin Fe(II) species are observed in the Mössbauer spectroscopic measurement when the salt stands at room temperature for a few days.

The results of the cyclic voltammography of

ferrocenylruthenocene show a reversible one-electron oxidation peak ($E_{\rm OX}$; 0.45 V) and two irreversible one-electron oxidation peaks ($E_{\rm OX}$; 0.85 and 0.92 V), as illustrated in Fig. 2. Based on the results of cyclic voltammography of ferrocene ($E_{\rm OX}$; 0.44 V) and ruthenocene ($E_{\rm OX}$; 0.72 V), the former value (0.45 V) can be ascribed to an oxidation of a ferrocene-type iron atom and the latter (0.85 and 0.92 V) to that of a ruthenocene-type ruthenium atom. This indicates that Ru atom is less easily oxidized than the Fe atom in ferrocenylruthenocene. Actually ferrocene is oxidized in sulfuric acid and dichlorodicyanobenzoquinone, giving the green ferrocenium salt, but ruthenocene is not oxidized by the same treatment.

Ferrocenylruthenocene is mono-oxidized in sulfuric acid, giving a green-colored solution characteristic of ferrocenium salts. Addition of a concentrated aqueous solution of NH₄BF₄ to the green colored solution gives red-brown precipitates determined as ferrocenylruthenocenium BF₄-. No peak is observed in ¹H and ¹³C NMR spectra of ferrocenylruthenocenium BF₄salt dissolved in acetonitrile probably because of the paramagnetism of the monomeric cations, but sharp signals are observed in ¹³C-CP-MAS NMR spectra of the BF₄⁻ salt in the solid state. This indicates that the paramagnetism of monomeric ferrocenylruthenocenium cation should be quenched through an antiferromagnetic interaction by producing dimeric cations. The magnetic susceptibility study shows that the BF₄salt is diamagnetic at temperatures from 78 to 300 K.

Figures 3-b and -c show the ⁵⁷Fe-Mössbauer spectra of the ferrocenylruthenocenium BF₄⁻ salt, where only one kind of chemical state is observed for the iron species and the Mössbauer parameters correspond well to those of ferrocenylruthenocene itself. The absence of either a broad singlet line or an anomalously larger Q.S. line than that of ferrocenylruthenocene indicates that the ferrocene moiety of the ferrocenylruthenocenium is neither oxidized to ferrocenium nor bound with an Fe-Fe bonding as described in [(C5H4)CpRu- (C_5H_4) CpFe-FeCp (C_5H_4) RuCp (C_5H_4)]²⁺ in a solid. However, the BF₄⁻ salt is so unstable in solution that the diamagnetic BF₄- salt dissolves in acetonitrile changing into a paramagnetic ferrocenium salt. This suggests the dissociation of the dimeric BF₄⁻ salt to a monomeric ferrocenylruthenocenium salt in solution.

Ferrocenylruthenocene is oxidized in sulfuric acid containing NH₄PF₆, giving deep purple precipitates determined as ferrocenylruthenocenium PF₆⁻. In contrast with the diamagnetic BF₄⁻ salt, the PF₆⁻ salt is paramagnetic from 78 K to 300 K. The effective magnetic moment of the PF₆⁻ salt is found to be 2.0 BM at 300 K which is smaller than the value of normal ferrocenium salts. In the spectrum of the PF₆⁻ salt measured at 78 K, two kinds of chemical states of iron species are observed, as shown in Table 1 and Fig. 4(a—c). The component with a smaller Q.S. value

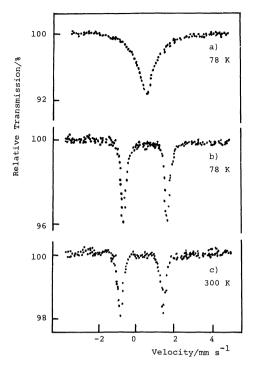


Fig. 3. ⁵⁷Fe-Mössbauer spectra of ferrocenium BF₄⁻ (a) and ferrocenylruthenocenium BF₄⁻ (b,c) salts, at indicated temperatures.

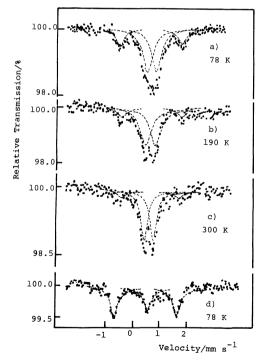


Fig. 4. ⁵⁷Fe-Mössbauer spectra of ferrocenylruthenocenium PF₆⁻ (a—c) salt and ferrocenylruthenocenium BF₄⁻ salt in poly(methyl methacrylate) (d), at indicated temperatures.

(2.25 mm s⁻¹) than the value of neutral ferrocene is ascribed to a low-spin Fe(II) species and the other component with a small Q.S. value (0.34 mm s⁻¹) to a

low-spin Fe(III) species, although all the mononuclear ferrocene and ferrocenium derivatives are known to show only a single spectral component in their spectra. Moreover, areal intensity of the Fe(III) is much larger than that of Fe(II). The facts indicate that a large portion of ferrocene moiety (more than 77% at 78 K) of the ferrocenylruthenocene is oxidized into ferrocenium in the ferrocenylruthenocenium PF₆-.

All the results obtained in the present study suggest that the difference of Mössbauer and magnetic properties of the ferrocenylruthenocenium BF₄- salt from those of the PF₆⁻ salt in the solid state could not be interpreted in terms of an intramolecular effect in a monomeric cation. However they could be interpreted by assuming an intermolecular effect such as formation of dimeric cations. In order to confirm this conclusion, ferrocenylruthenocenium BF₄- was dissolved in acetonitrile and dispersed in poly(methyl methacrylate). In the Mössbauer spectrum of the salt measured at 78 K, two kinds of iron atoms were observed; one is in an Fe(II) state and the other is in an Fe(III) state, as shown in Fig. 4-d. This Mössbauer spectrum is very different from that of the dimeric BF₄salt in a solid (shown in Fig. 3-b,c) and similar to that of ferrocenylruthenocenium PF₆-, except for the areal intensities of spectral components assigned to Fe(II) and Fe(III). Based on the fact that ferrocenylruthenocene is not oxidized in acetonitrile with poly(methyl methacrylate), it can be concluded that dissociation of the dimeric BF₄⁻ salt gives a monomeric ferrocenylruthenocenium BF₄⁻ salt in the solution.

Droege et al. already reported that oxidation of osmocene by Ce(NH₄)₂(NO₃)₆ and NH₄PF₆ gives a diamagnetic [Cp₂Os]₂(PF₆)₂ salt and determined the crystal structure by using X-ray diffraction, concluding that the two osmocenium cations are jointed by an Os(III)-Os(III) bond; $[Cp_2Os-OsCp_2]^{2+}(PF_6^{-})_2.$ Based on the analogy to the dimeric osmocenium PF₆- salt and the absence of an Fe-Fe bond in the ferrocenylruthenocenium BF₄- salt, it may be reasonable to assume that the reaction product of ferrocenylruthenocene with H₂SO₄-NH₄BF₄ is expressed as [Cp(C₅H₄)- $Fe(II)Cp(C_5H_4)Ru(III)-Ru(III)(C_5H_4)CpFe(II)(C_5H_4)-Ru(IIII)(C_5H_4)-Ru(III)(C_5H_5)-Ru($ Cp]2+(BF4-)2 with a Ru(III)-Ru(III) bond in a solid, although the metal-metal chemical bond may be unstable in solution probably because of dissociation of the dimer cation; i.e., the dimeric BF₄- diamagnetic cation dissolves in acetonitrile, giving a monomeric $[Cp(C_5H_4)Fe(III)Cp(C_5H_4)Ru(II)]+BF_4$ paramagnetic cation. On the other hand, ferrocenylruthenocenium PF_{6} salt can be expressed as $[Cp(C_5H_4)Fe(III)Cp-$ (C₅H₄)Ru(II)]+PF₆- including a small amount of $[Cp(C_5H_4)Fe(II)Cp(C_5H_4)Ru(III)-Ru(III)(C_5H_4)CpFe (II)(C_5H_4)Cp]^{2+}(PF_6^-)_2$. This assumes that the antiferromagnetic Ru(III)-Ru(III) bond in the PF₆- salt is not as stable as in the BF₄⁻ salt.

All attempts to prepare [Cp₂Ru(III)-Ru(III)Cp₂]²⁺

cation by means of chemical and electrochemical oxidation of ruthenocene have been unsucessful, probably because of the instability of the Cp_2Ru^+ cation. Based on the results of electrochemical studies, it is known that osmocene is oxidized in two one-electron steps ($E_{1/2}$, 0.75 and 1.37 V), while ruthenocene in a two-electron step ($E_{1/2}$, 0.78 V).^{15,16)} The ruthenocene moiety of ferrocenylruthenocene is found to be oxidized in two one-electron steps (E_{OX} , 0.85 and 0.92 V), associated with an antiferromagnetic bond formation, Ru(III)–Ru(III).

[1]Ferroceno[1]ruthenocenophane was prepared in the present study by reduction of [1]ferroceno[1]-ruthenocenophane-1,13-dione, as shown in Scheme 1, in order to improve the poor yield in Westerhoff's method. 17) Studies of the cyclic voltammography of [1]ferroceno[1]ruthenocenophane show a reversible one-electron oxidation peak ($E_{\rm OX}$; 0.39 V) and an irreversible two-electron oxidation peak ($E_{\rm OX}$; 0.89 V). The former value (0.39 V) is ascribed to the oxidation of ferrocene-type Fe atoms and the latter (0.89 V) to that of ruthenocene-type Ru atoms.

[1]Ferroceno[1]ruthenocenophane is easily oxidized by p-benzoquinone-BF3(Et2O) in benzene, giving a paramagnetic dark brown [1]ferroceno[1]ruthenocenophanium BF₄⁻ salt. The effective magnetic moments of the BF₄- salt is found to be 2.0 BM at 300 K. This value corresponds well with the value for the ferrocenylruthenocenium PF₆⁻ salt (2.0 BM at 300 K). ⁵⁷Fe-Mössbauer spectroscopic studies of [1]ferroceno-[1]ruthenocenophanium BF₄- salt show that two chemical states of the iron species are observed, as shown in Table 2 and Fig. 5. The component with a little smaller Q.S. value (2.23 mm s⁻¹) than the value of neutral metallocene is ascribed to a low-spin Fe(II) species and the other component with a small Q.S. value (0.32 mm s⁻¹) to a low-spin Fe(III) species. Moreover, the decreased intensity in the large Q.S. component and the increased intensity in the small Q.S. component are observed with increasing temperature. I(II) and I(III) in Tables 1 and 2 stand for the relative areal intensities of the spectral components assigned to the Fe(II) and Fe(III) state respectively. The intensity ratio, I(II)/I(III), in [1]ferroceno[1]ruthenocenophanium BF₄⁻ is found to be 1.96 and 0.54 at 78 and 300 K, respectively. The temperature dependence of the intensity ratio of I(II)/I(III) is much larger than those found in a number of mixed-valence (trapped-valence type) biferrocene derivatives. indicates that the large temperature dependence of the areal intensities of the Fe(II) and Fe(III) state in the [1]ferroceno[1]ruthenocenophanium BF₄- salt cannot be ascribed to the difference in the recoil-free fraction of the iron atoms in the molecule.

Based on the results of ferrocenylruthenocenium BF_4^- and PF_6^- , it is reasonable to assume that the [1]ferroceno[1]ruthenocenophanium BF_4^- salt has an

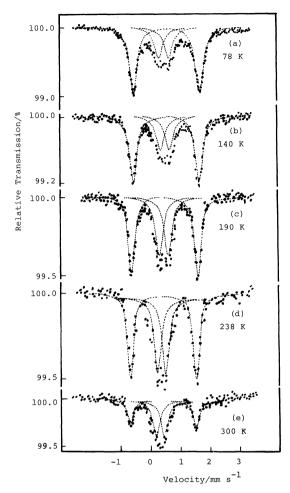


Fig. 5. ⁵⁷Fe-Mössbauer spectra of [1]ferroceno[1]-ruthenocenophanium BF₄⁻ salt, at indicated temperatures.

antiferromagnetic Ru(III)–Ru(III) bond at lower temperatures, although the Ru–Ru bond is more unstable than that of ferrocenylruthenocenium BF_4^- salt. This is probably because of steric hindrance in the [1]ferroceno[1]ruthenocenophanium salt. It is found that the Ru(III)–Ru(III) bond in the dimeric BF_4^- salt dissociates easily at higher temperatures giving a monomeric $[(C_5H_4)_2Fe(III)(CH_2)_2(C_5H_4)_2Ru(II)]^+BF_4^-$ salt. Therefore, it is concluded that the [1]ferroceno-[1]ruthenocenophanium BF_4^- salt is expressed as $[(C_5H_4)_2Fe(II)(CH_2)_2(C_5H_4)_2Ru(III)-Ru(III)(C_5H_4)_2(CH_2)_2-Fe(II)(C_5H_4)_2]^2+(BF_4^-)_2$ including a small amount of $[(C_5H_4)_2Fe(III)(CH_2)_2(C_5H_4)_2Ru(II)]^+BF_4^-$ in the solid at low temperatures.

[1]Ferroceno[1]ruthenocenophane is also oxidized by *p*-benzoquinone-picric acid in benzene, giving a paramagnetic green-yellow [1]ferroceno[1]ruthenocenophanium picrate salt. The effective magnetic moments of the picrate salt is found to be 1.6 BM at 300 K, which is much smaller than the value of normal ferrocenium salts (2.4—2.6 BM). A ferrocene-type Mössbauer line component (Q.S. 2.22 mm s⁻¹ at 78 K) with a small

amount of ferrocenium-type Mössbauer line component is observed in the Mössbauer spectra of the picrate salt, as shown in Fig. 6-a and -b, although the temperature dependence of the intensity ratio is much smaller than that of the BF₄⁻ salt. The facts indicate that an antiferromagnetic Ru(III)–Ru(III) bond is more stable in the picrate than in the BF₄⁻ salt. The picrate salt is expressed as $[(C_5H_4)_2Fe(II)(CH_2)_2(C_5H_4)_2-Ru(III)-Ru(III)(C_5H_4)_2(CH_2)_2(C_5H_4)_2Fe(II)]^2+$ (picrate)2 including a small amount of $[(C_5H_4)_2Fe(III)(CH_2)_2-(C_5H_4)_2Ru(II)]^2+$ picrate, as in the case of the BF₄⁻ salt.

Contrary to the picrate salt, [1]ferroceno[1]ruthenocenophanium PF_6^- salt gives ferrocenium type Mössbauer lines with a small portion of ferrocene type's line component, as shown in Fig. 6-c and -d. The fact that the Mössbauer spectroscopic features of the [1]ferroceno[1]ruthenocenophanium PF_6^- salt are similar to those of the ferrocenylruthenocenium PF_6^- suggests that the antiferromagnetic Ru(III)-Ru(III) bond is unstable in the [1]ferroceno[1]ruthenocenophanium PF_6^- salt. The PF_6^- salt is expressed as $[(C_5H_4)_2Fe(III)(CH_2)_2(C_5H_4)_2Ru(II)]^+PF_6^-$ including a small amount of $[(C_5H_4)_2Fe(II)(CH_2)_2(C_5H_4)_2Fe(II)]^{2+}$ $(PF_6^-)_2$.

[1]Ferroceno[1]ruthenocenophane-1,13-dione was first prepared in the present study. The cyclic voltammography of the [1]ferroceno[1]ruthenocenophane-1,13-dione shows a reversible one-electron oxidation peak (E_{OX} ; 0.92 V, assigned to ferrocene moiety) and an irreversible two-electron oxidation peak (1.21 V, assigned to ruthenocene moiety). The much higher values than those of ferrocenylruthenocene and [1]ferroceno[1]ruthenocenophane are ascribed to the effect of an electron-attractive carbonyl groups. [1]Ferroceno[1]ruthenocenophane-1,13-dione is oxidized by p-benzoquinone and BF3-Et2O as in the case of ferrocenylruthenocenium BF₄-, giving a paramagnetic (effective magnetic moment, 2.1 BM at 300 K) dark brown 1,13-dioxo[1]ferroceno[1]ruthenocenophanium BF₄⁻ salt. The two types of iron atoms (Q.S.; 2.17 mm s⁻¹, assigned to Fe(II) and 0.34 mm s⁻¹ to Fe(III) species, both at 78 K) are observed. The much larger areal intensity of the Fe(III) component than that of Fe(II) suggests that the antiferromagnetic Ru(III)-Ru(III) bond is unstable in the BF₄- salt, probably because of the effect of electron attractive carbonyl groups on the e2g electrons of the Ru atom. The BF₄- salt is expressed as [(C₅H₄)₂Fe(III)(CO)₂-

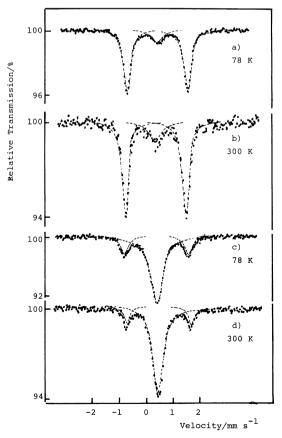


Fig. 6. ⁵⁷Fe-Mössbauer spectra [1]ferroceno[1]ruthenocenophanium picrate (a,b) and [1.1]ferroceno[1]ruthenocenophanium PF₆⁻ (c,d) salts, at indicated temperatures.

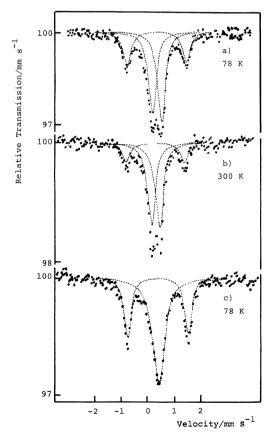


Fig. 7. 57 Fe-Mössbauer spectra of 1,13-dioxo[1]-ferroceno[1]ruthenocenophanium BF₄⁻ (a,b) and ferrocenylruthenocenylmethanium PF₆⁻ salts (c), at indicated temperatures.

 $\begin{array}{lll} (C_5H_4)_2Ru(II)]^+BF_4^- & including \ a \ small \ amount \ of \\ [(C_5H_4)_2Fe(II)(CO)_2(C_5H_4)_2Ru(III)-Ru(III)(C_5H_4)_2-(CO)_2(C_5H_4)_2Fe(II)]^{2+}(BF_4^-)_2. \end{array}$

The ferrocene moiety is so separated from a ruthenocene moiety in a ferrocenylruthenocenylmethane molecule compared in ferrocenylruthenocene that the Fe and Ru atoms cannot directly interact with each other. Ferrocenylruthenocenylmethane reacts with sulfuric acid containing NH₄PF₆, giving a monocationic ferrocenylruthenocenylmethanium PF₆- salt. In the Mössbauer spectrum of the salt, two types of iron atoms (Q.S., 2.21 mm s⁻¹, ascribed to ferrocene type and 0.0 mm s⁻¹, to ferrocenium type) are observed, as seem in Fig. 7-c. Because there is no possibility of an intramolecular electron-transfer process between the Ru and Fe atoms, the presence of Fe(II) component in the PF₆⁻ salt suggests the Ru(III)-Ru(III) bond formation in the salt, although the Ru(III)-Ru(III) bond may not be as stables as that of ferrocenylruthenocenium BF₄-.

All the results obtained in the present studies support the relatively stable chemical-bond formation between the Ru(III) and Ru(III) atoms in ferrocenyl-ruthenocenium BF₄⁻ and [1]ferroceno[1]ruthenocenophanium picrate salt. Further studies must be conducted to provide direct evidence to prove the Ru(III)-Ru(III) coordination bond in the salts by using ⁹⁹Ru Mössbauer spectroscopy and/or single crystal X-ray analysis.

References

- 1) M. J. Potasek, P. G. Debrunner, W. H. Morrison, Jr., and D. N. Hendrickson, J. Chem. Phys., **60**, 2203 (1974).
- 2) K. R. Mann, W. H. Morrison, Jr., and D. N. Hendrickson, *Inorg. Chem.*, **13**, 1180 (1979).
- 3) M. Watanabe, I. Motoyama, and H. Sano, *Bull. Chem. Soc. Ipn.*. **59**, 2109 (1986).
- 4) M. Watanabe, I. Motoyama, and H. Sano, *Bull. Chem. Soc. Ipn.*. **59**, 2103 (1986).
- 5) M. Watanabe, I. Motoyama, and H. Sano, *Chem. Lett.*, **1986**, 1699.
- 6) M. Watanabe, I. Motoyama, and H. Sano, *Chem. Lett.*, **1987**, 309.
- 7) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, *Bull. Chem. Soc. Jpn.*, **61**, 827 (1988).
- 8) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Hyperfine Interact., 40, 355 (1988).
- 9) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, I. Coord. Chem., 18, 11 (1988).
- 10) E. W. Neuse and M. S. Loonat, *Transition Met. Chem.*, **6**, 260 (1981).
- 11) S. P. Gubin and A. A. Lubovich, J. Organomet. Chem., **22**, 183 (1970).
- 12) W. E. Watts, J. Organomet. Chem., 10, 191 (1967).
- 13) R. Prins, Mol. Phys., 19, 603 (1970).
- 14) M. W. Droege, W. D. Harman, and H. Taube, *Inorg. Chem.*, **26**, 1309 (1987).
- 15) S. P. Gubin, S. A. Smirnova, L. I. Denisovich, and A. A. Lubovich, *J. Organomet. Chem.*, **30**, 243 (1971).
- 16) L. I. Denisovich, N. V. Zakurin, A. A. Begrukova, and S. P. Gubin, *J. Organomet. Chem.*, **81**, 207 (1974).
- 17) U. T. Mueller-Westerhoff, A. Nazzal, and M. Tanner, J. Organomet. Chem., 236, C41 (1982).